PyTorch与深度学习 PyTorch & Deep Learning

2025-02-07 19:30:00
本章介绍了PyTorch的基础知识,包括张量、前向传播、反向传播等概念,以及 如何构建神经网络、优化数据加载、使用GPU训练模型等操作,为进行深度学习奠定基础 This chapter introduces the fundamentals of PyTorch, including concepts such as tensors, forward propagation, and backpropagation. It also covers how to build neural networks, optimize data loading, and train models using GPUs, laying the foundation for deep learning.